就像某天一个月薪4000的打工人忽然知道自己原本可能成为亿万富翁,结果有个重生者以‘人类共同发展’为由把属于你的机会给夺走了,你会作何感想?
平心而论,有些不公平。
所以在徐云的内心深处,他对小麦是有些愧疚感的。
往后怎么补偿小麦另说,总之在眼下这个过程里,他能做的便是让小麦尽可能的进入这些大佬的视线里。
当然了。
小麦并不知道徐云内心的想法,此时他正拿着钢笔,刷刷刷的在纸上写着受力分析:
“罗峰先生说不考虑重力,那么,就只要分析波段ab两端的张力t就行了。”
“波段ab受到a点朝左下方的张力t和b点朝右上方的张力t,彼此对等。”
“但波段的区域是弯曲的,因此两个t的方向并不相同。”
“假设a点处张力的方向跟横轴夹角为θ,b点跟横轴的夹角就明显不一样了,记为θ+θ。”
“因为波段上的点在波动时是上下运动,所以只需要考虑张力t在上下方向上的分量。”
“b点处向上的张力为t·私n,a点向下的张力为t·私nθ,那么,整个ab段在竖直方向上受到的合力就等于这两个力相减”
很快。
小麦在纸上写下了一个公式:
f=t·私n-t·私nθ。
徐云满意的点了点头,又说道:
“那么波的质量是多少呢?”
“波的质量?”
这一次。
小麦的眉头微微皱了起来。
如果假设波段单位长度的质量为,那么长度为l的波段的质量显然就是·l。
但是,因为徐云所取的是非常小的一段区间。
假设a点的横坐标为x,b点的横坐标为x+x。
也就是说绳子ab在横坐标的投影长度为x。
那么当所取的绳长非常短,波动非常小的时候,则可以近似用x代替l。
这样绳子的质量就可以表示为
与此同时。
一旁的基尔霍夫忽然想到了什么,瞳孔微微一缩,用有些干涩的英文说道:
“等等合外力和质量都已经确定了,如果再求出加速度”
听到基尔霍夫这番话。
原本就不怎么喧闹的教室,忽然又静上了几分。
对啊。
不知不觉中,徐云已经推导出了合外力和质量!
如果再推导出加速度
那么不就可以以牛二的形式,表达出波在经典体系下的方程了吗?
想到这里。
几位大佬纷纷拿出纸笔,尝试性的计算起了最后的加速度。
说起加速度,首先就要说说它的概念:
这个是用来衡量速度变化快慢的量。
加速度嘛,肯定是速度加得越快,加速度的值就越大。
比如我们经常可以听到的“我要加速啦”等等。
假如一辆车第1秒的速度是2m/s,第2秒的速度是4m/s。
那么它的加速度就是用速度的差除以时间差,结果就是2m/s2。
再来回想一下,一辆车的速度是怎么求出来的?
当然是用距离的差来除以时间差得出的数值。
比如一辆车第1秒钟距离起点20米,第2秒钟距离起点50米。
那么它的速度就是用距离的差除以时间差,结果就是30m/s。
不知道大家从这两个例子里发现了什么没有?
没错!
用距离的差除以时间差就得到了速度,再用速度的差除以时间差就得到了加速度,这两个过程都是除以时间差。
那么
如果把这两个过程合到一块呢?
那是不是就可以说:
距离的差除以一次时间差,再除以一次时间差就可以得到加速度?
当然了。
这只是一种思路,严格意义上来说,这样表述并不是很准确,但是可以很方便的让大家理解这个思想。
如果把距离看作关于时间的函数,那么对这个函数求一次导数:
就是上面的距离差除以时间差,只不过趋于无穷小,就得到了速度的函数、
对速度的函数再求一次导数,就得到了加速度的表示。
鲜为人同学们懂不懂不知道,反正在场的这些大佬们很快便都想到了这一点。
是的。
之前所列的函数f描述的内容,就是波段上某一点在不同时间t的位置!
所以只要对对f求两次关于时间的导数,自然就得到了这点的加速度a。
因为函数f是关于x和t两个变量的函数,所以只能对时间的偏导f/t,再求一次偏导数就加个2上去。
因此很快。
包括法拉第在内,所有大佬们都先后写下了一个数值:
加速度a=2f/t2。
而将这个数值与之前的合力与质量相结合,那么一个新的表达式便出现了:
f=t·私n-t·私nθ=·x2f/t2。
随后威廉·韦伯认真看了眼这个表达式,眉头微微皱了些许:
“罗峰同学,这就是最终的表达式吗?我似乎感觉好像还能化简?”
徐云点了点头:
“当然可以。”
f=t·私n-t·私nθ=·xa2f/t2。
这是一个最原始的方程组,内容不太清晰,方程左边的东西看着太麻烦了。
因此还需要对它进行一番改造。
至于改造的思路在哪儿呢?
当然是私nθ了。
只见徐云拿起笔,在纸上画了个直角三角形。
众所周知。
正弦值私nθ等于对边除以斜边a,正切值tanθ等于对边除以邻边b。
徐云又画了个夹角很小的直角三角形,角度估摸着只有几度:
“但是一旦角度θ非常非常小,那么邻边b和斜边a就快要重合了。”
“这时候我们是可以近似的认为a和b是相等的,也就是a≈b。”
随后在纸上写到:
【于是就有/b≈/a,即tanθ≈私nθ。】
【之前的公式可写成f=t·tan-t·tanθ=·xa2f/t2。】
“稍等一下。”
看到这句话,法拉第忽然皱起了眉头,打断了徐云。
很明显。
此时他已经隐隐出现了掉队的迹象:
“罗峰同学,用tanθ替代私nθ的意义是什么?”
徐云又看了小麦,小麦当即心领神会:
“法拉第先生,因为正切值tanθ还可以代表一条直线的斜率呀,也就是代表曲线在某一点的导数。”
“正切值的表达式是tanθ=/b,如果建一个坐标系,那么这个刚好就是直线在y轴的投影dy,b就是在x轴的投影dx。”
“它们的比值刚好就是导数dy/dx,也就是说tanθ=dy/dx。”
法拉第认真听完,花了两分钟在纸上演算了一番,旋即恍然的一拍额头:
“原来如此,我明白了,请继续吧,罗峰同学。”
徐云点点头,继续解释道:
“因为波的函数f是关于x和t的二元函数,所以我们只能求某一点的偏导数。”
“那么正切值就等于它在这个点的偏导数tanθ=f/x,原来的波动方程就可以写成这样”
随后徐云在纸上写下了一个新方程:
t=·xa2f/t2。
看起来比之前的要复杂一些,但现场的这些大佬的目光,却齐齐明亮了不少。
到了这一步,接下来的思路就很清晰了。
只要再对方程的两边同时除以x,那左边就变成了函数f/x在x+x和x这两处的值的差除以x。
这其实就是f/x这个函数的导数表达式。
也就是说。
两边同时除以一个x之后,左边就变成了偏导数f/x对x再求一次导数,那就是f对x求二阶偏导数了。
同时上面已经用2f/t2来表示函数对t的二阶偏导数,那么这里自然就可以用2f/x2来表示函数对x的二阶偏导数。
然后两边再同时除以t,得到方程就简洁多了:
2f/x=2f/tx2。
同时如果你脑子还没晕的话便会发现
/t的单位
刚好就是速度平方的倒数!
也就是说如果我们把一个量定义成t/的平方根,那么这个量的单位刚好就是速度的单位。
可以想象,这个速度自然就是这个波的传播速度v:
v2=t/。
因此将这个值代入之后,一个最终的公式便出现了:
2f/x=2f/v2x2。
这个公式在后世又叫做
经典波动方程。
当然了。
这个方程没有没有考虑量子效应。
如果要考虑量子效应,这个经典的波动方程就没用了,就必须转而使用量子的波动方程,那就是大名鼎鼎的薛定谔方程。
薛定谔就是从这个经典波动方程出发,结合德布罗意的物质波概念,硬猜出了薛定谔方程。
没错,靠猜的。
具体内容就先不赘述了,总之这个方程让物理学家们从被海森堡的矩阵支配的恐惧中解脱了出来,重新回到了微分方程的美好世界。
如今徐云不需要考虑量子方面的事儿,因此有经典波动方程就足够了。
接着他又在纸上写下了一道新的公式。
而随着这道新公式的写出,法拉第赫然发现
自己剩下的那一片硝酸甘油,好像不太够用了
注:
有人说伏特是我给bug打的补丁,无语我会犯这种常识性的错误吗,之前泰勒展开我都用韩立展开替代了,光伏这个写出来这么久没改还不能说明啥嘛。
类似的伏笔我之前又不是没写过,甚至我在《来夫剑诀》那章就说过这个功法下一个副本会用到,当时就已经把小麦副本设计好了。
留下来的线被说成打补丁,一言难尽.jpg。