“.......”
看着寂静的如同墓地一般的现场。
看着面前包括小麦、老汤在内,众人脸上一道道错愕的表情。
徐云的心中顿时浮现出了一股酣畅淋漓的痛快感。
终于揭秘了,过去这些日子可憋死他了......
在过去这段时间里,他对这套设备进行了最高最高规格的保密。
除了艾维琳之外。
没有任何人见过这套设备的完全体。
例如厂房方面进行的是分散加工,每个小组单独完成各自的生产内容,并不知道组合后的成品模样。
这个模式和徐云嘱托艾维琳生产的两件小东西有些类似,只是那两个小东西的分散度要更高一些罢了。
而在组装方面。
徐云同样安排的是分段组装:
连夜安排人手分开组装,完毕后立刻覆盖上遮挡布,即便是老汤这个格物社社长也没见过它的原貌。
而现如今这些‘观众’们惊愕的表情,则说明了一件事:
徐云事先所做的这些保密安排,全都是值得的!
当然了。
现场这些人的惊讶,其实也在徐云的预料之中。
毕竟纵观过去所有副本。
无论是小牛的1665,还是老苏的1100。
甚至算上小麦这个1850副本的前半部分,他都没有拿出过如此惊世骇俗的东西。
甚至他敢拍着胸脯打包票:
在所有已知的穿越者中。
除了那种可以直接通过xx系统具现的挂壁,否则能在1850年自制出粒子加速器的决然不超过五指之数。
没错。
徐云此番拿出的压轴设备,正是一台——
粒子加速器!
括弧,究极究极乞丐版。
此前曾经介绍过,徐云今天准备做的第三个实验就是电子的双缝干涉实验。
其中由于当初电磁波校验时他埋下的伏笔——也就是误导性的提出了电磁波是一种光,因此光子也被徐云顺利的替代成了电子。
毕竟单个光子太难搞出来了。
像后世大部分实验室使用的‘单光子’,实际上都只是能量光子,一般通过hbt实验或者g2检测。
因为能量是一份一份的,能制造出最小能量的频率倍数,理论上生产出的就是单光子。
比如说你有一袋子相同的第三套一元硬币,每枚硬币重6.1g。
那么分拣的时候只要看电子秤的示数,出现了6.1就代表分拣出了一元硬币,整个过程不会靠手去“摸”硬币。
也就是靠着数值而非现象来生产光子。
真正的单光子生产起来非常非常复杂,比如衰减激光脉冲啊、自发四波混频啊、或者人造原子辐射单光子等等。
这些技术即便是徐云他也搞不出来——或者说很难在几个月内搞出来。
而能量光子呢?
这个概念在1850年显然没法服众。
因此徐云最终思索再三,还是决定用电子替代光子。
可电子也有个问题啊:
电子虽然容易产生,但发射起来却并不容易。
目前徐云能做到的电子发射手段只有一个,那就是发射阴极射线。
可阴极射线在发射的时候有个致命缺陷——它产生的束团都很长。
有点能散后,纵向发射度就很拉跨了。
因此摆在徐云面前的改良方法只有三种。
一是场致发射。
二是搞个半导体光阴极,里面加上碲化物,锑化物和iii-v化合物几种东西。
然后再弄出个超时代的精细光栅差不多才能搞定。
三就是自己搞个多重组合环节,筛选出平流电子。
这也是为啥在后世,你很难看到电子双缝干涉实验视频的原因——不信你上网搜一搜,几乎看到的都是演示动画或者一两张图片。
演示动画和教科书里一般只会截取成像屏的部分,发射源看起来就是个电子枪在biubiubiu,实验面积可能还没个公共厕所大。
但实际上这个实验要做起来,必须要用到加速器、甚至其他一些需要高度保密的仪器。
当然了。
这倒不能说是疏忽或者类似百度百科那样的错漏bug。
主要是对于高中学生而言,生成平流电子的环节深奥而又没必要,属于进阶的专业知识。
所以自然就被化简了。
而在1850年这个时代。
第二种可能性直接排除,第一种难度略微低一些,但作为压轴戏码未免有些降档。
所以‘无奈’之下......
徐云只能选择第三种方案。
也就是手搓一台加速器。
上辈子的徐云没有考上科大的少年班,只是以一个正常分数成为了一名普通的科大学生。
所读专业则是近代物理系的粒子物理与原子核物理。
从这个专业不难看出,这是一个和微观世界经常打交道的学科。
像欧洲核子中心大型强子对撞机上的atlas与alice实验、海对面布鲁克海汶国家实验室相对论重离子对撞机上的star实验、暗物质粒子探测卫星dampe...也就是悟空号的实验这些——
徐云通通都没参加过。
咳咳.......
不过徐云倒是参与过belle实验、大亚湾中微子实验室的取数,燕京正负电子对撞机bepcii的实验等等.....
现在霓虹那台叫做superkekb的非对称正负电子对撞机前身kekb,徐云还曾经亲自上手过。
普普通通吧.jpg。
可惜那时候超级陶粲装置和cepc的概念都没提出来,不然他估摸着还能混点儿buff。
上辈子徐云和大大小小的加速器或者类加速器打了七八年的交道,自然也了解怎么样可以组装出一台究极廉价乞丐版的粒子加速器。
不过考虑到咱们这是一本逻辑流,这里先补充几个信息:
人类历史上历史上第一台回旋加速器出现于1930年,能量为1mev。
并且制造它的工艺实际上大约是1900年的水准。
而早先提及过。
眼下这个副本的由于小牛的缘故,工业...尤其是在光学仪器上的制造水准,同样接近了1900年。
比如汇率换算就是按1900年来计算的。
也就是说在仪器方面两个时代相差其实不算很远,关键还是在于知识理论体系的差异。
而这恰恰是徐云这个穿越者的优势项。
其次。
与徐云当初在1100副本中搞出来的发动机一样。
这台乞丐版加速器的核心逻辑原理依旧是只要应付少数次实验,也就是今晚鼓捣完差不多就能报废的意思。
不需要考虑长期稳定性。
很多环节就松了不知道多少倍了。
后世甚至有人专门卖自制加速器的毕业设计,大概五千块钱左右吧。
自制过加速器、或者上辈子是加速器的同学应该都知道。
加速器这玩意儿设计起来主要有几个难点要考虑:
1.要做哪种加速器?直线or回旋?
2.想用哪种带电粒子?
3.如何聚拢粒子束?
4.能用多大的电压加速?
5.如何探测加速后的粒子?
6.如何降低粒子在空气中的能损?
这六个问题中,第一环节显然是最简单的。
因为徐云只需要生产平流电子,这是最简单的微粒之一,量级低的可怕。
所以直线或者回旋甚至复合在一起都无所谓。
例如徐云设计出的这台乞丐版加速器外观就是个复合型,其中一侧是一个直径一米五左右、高度约半潘多拉的圆形铁盒。
铁盒的外侧则连接着一条一百米长的通道,末端放着干涉成像板。
大概就是这样:
o→i,那个i就是成像板。
这款加速器的原理非常简单:
利用电磁感应产生的涡旋电场进行磁通量加速,大致有些类似奥运会里的铅球,转着到合适的位置就把球丢出去。
转的圈数越多。
‘铅球’被赋予的动能就越大。
接着最容易的则是2、4、5、6这四个问题。
后世的diy流程一般是这样的:
自己氪金上网去买个电离传感烟雾报警器——里头有镅-241,这是一种非常安全的粒子源。
再加上数码相机中的cmos图像传感器作为探测器,以及一口高压锅和真空泵,就能把这些环节给搞定。
全套成本大概8000左右吧。
而徐云这次嘛.......
那就要更简单许多了。
他需要加速的是电子,探测器自然是感应屏——如今真空管已经被徐云搞了出来,感应屏便也不再是个问题了。
电压则由剑桥大学负责,反正鲁姆科夫线圈的电压肯定是足够的。
至于降低能损......
“如各位所见,这台加速器的内壁结构,我将其称为束流管内壁。”
乞丐版加速器边上。
徐云先是敲了敲它银色的铝质外壳,发出了冬冬冬的声音。
又从侧面打开了一个小口,露出了内部的情景:
“束管主要是用来保证内部的高真空,所以束管材料的选择上需要低出气率,并且相对磁导率接近于1。”
“这个概念类似于真空管,法拉第教授您应该对此并不陌生。”
从座位上赶到加速器边上的法拉第凑上前看了几眼,轻轻点了点头。
原本时间线中的磁导率要在1885年才会被提出,但如今这个副本在小牛的影响下,磁导率也提前诞生了出来。(见295章)
因此如今徐云这么一解释,法拉第倒也跟上了他的思路。
接着徐云地面上的一口箱子里取出了几件东西,赫然是当初拜托艾维琳打造的铍管等物:
“这是铍管,它能起到封真空的作用,同时还能保证玩意电子在撞击到内壁后产生非必要的影响——不过各位小心一点,铍管剧毒又致癌,我们只能把它装在玻璃里观察,不能上手......”
“这个则是含有掺锌铁氧体的空芯螺线管,可以形成多孔结构,由于构建出一个临时储存环.......”
“右边这个是纯钼的锥形体,可以在电子数量增加后放缓增速.......”
解释的同时。
徐云还取出了一张早就准备好的示意图,通过图示进行更直观的科普。
法拉第认真听完徐云的介绍,接过示意图看了好一会儿。
沉默片刻,又看着面前这条百米长龙,对问道:
“罗峰同学,这台加...加速器一秒钟可以发射多少电子?”
徐云想了想,说道:
“大概一千个左右吧。”
他的设计方案参考的是此前提及过的、内布拉斯加大学林肯分校的物理系研究团队在2011年搞出来的方案。
也就是d/10.1088/1367-2630/15/3/033018。
这个方案首先让两把阴极射线枪互相发射,通过一处预先设置的电极后电子会偏转。
然后经过控制极筛选,其次在预置的锌板上发生——
光电效应。(憋死我了,光电效应的全部材料就是为这一章准备的)
在光电效应光中,原子会一个光子并产生一个自由电子,控制好数量就能统计出总数。
这个能级1850年的科学界不了解,但在后世随便一个大物学生都能算出来。
假设有一群粒子并且这群粒子之间相互充分交换动能,达到平衡态。
那么这些粒子的动能就会满足玻尔兹曼分布。
也就是ek=3/2kt,其中t是温度。
计算好动能后,一切就很简单了。
只要再装一个金属环然后加上负电压,由于电子也带负电,所以调节这个电极上的电压就可以让电子减速,筛除一些偏转方向错误的电子。
有些电子动能不够,干脆就掉头回去了。
这些电子被存储到含有掺锌铁氧体的空芯螺线管中,经过再次偏转就能再次成为可以发射的电子。
经过这样一筛选,便可以做到阶段性的多电子射出。
有手就行.jpg。
当然了。
由于精度问题,徐云肯定没法保证每次都只有一个电子被发射出来。
但平均每毫秒一个电子的速度通过加速器还是不难的,也就是徐云所说的一秒钟有1000个符合要求的电子打在显像板上。
视线再回归原处。
法拉第摸着加速器的外壳,手指头有节奏的在上头敲击着。
不知为何,他对于这种通体银色的光滑铝制外表莫名的有些喜爱。
过了一会儿,法拉第忽然又想到了什么,手指一停,继续对徐云问道:
“罗峰同学,你说的原理我差不多搞懂了,不过有一点我还是没想明白.......”
“你所说的设计似乎只能筛选出方向、速度一样的电子,但你怎么才能把它们聚拢到一起呢?”
徐云顿时一愣。
回过神后,心中再次浮现出一丝感叹。
不愧是专业大老啊.......
看到这里头还没晕的同学应该还记得。
在上面提出的六点中,还有一个环节没有给出答桉。
也就是第三点:
如何聚拢粒子束。
毕竟有了粒子源后,还需要考虑到束流聚焦的问题嘛。
不聚焦的话,恐怕要很久很久才会有实验结果产出。
看着一脸好奇的法拉第,徐云再次从储物箱里掏了掏,取出了一块银白色的金属块:
“法拉第教授,靠着这个就行。”
徐云拿出的金属块不同于密封的铍管,说明它可以被上手。
于是法拉第便很信任的从徐云手中接过金属块,仔细的打量了起来。
这个金属块看上去方方正正的,大概有手掌大小,不过入手后的感觉却有些......
柔软?
法拉第尝试性的用大拇指在金属块上捏了捏,轻轻的咦了一声:
“嗯?这是......”
只见他在衣兜里掏了掏,取出了一枚随身携带的小铁片,轻轻放到了金属块下方三厘米的位置上。
很快。
啪——